原理简介
物质分为导体、半导体、绝缘体。绝缘体又叫介质材料,介质材料由极性分子和非极性分子组成。微波是频率在300兆赫到300千兆赫的高频电磁波,波长1米一1毫米。这些由极性分子和非极性分子组成的介质材料,在微波高频电磁场作用下,极性分子从原来的随机分布状态转向按照电场的极性排列取向,介质中的极性分子从原来的热运动状态转为跟随微波电磁场的交变而排列取向,产生激烈的磨擦而生热。在这一微观过程中,微波能量转化为介质内的热能,使介质温度呈现为宏观上的升高,这就是微波加热的基本原理。微波加热是介质材料自身损耗电场能量而发热,对于导电的金属材料,电波不能透人内部而被反射,金属材料不能吸收微波。
1.1 微波加热原理
物质分为导体、半导体、绝缘体。绝缘体又叫介质材料,介质材料由极性分子和非极性分子组成。微波是频率在300兆赫到300千兆赫的高频电磁波,波长1米一1毫米。这些由极性分子和非极性分子组成的介质材料,在微波高频电磁场作用下,极性分子从原来的随机分布状态转向按照电场的极性排列取向,介质中的极性分子从原来的热运动状态转为跟随微波电磁场的交变而排列取向,产生激烈的磨擦而生热。在这一微观过程中,微波能量转化为介质内的热能,使介质温度呈现为宏观上的升高,这就是微波加热的基本原理。微波加热是介质材料自身损耗电场能量而发热,对于导电的金属材料,电波不能透人内部而被反射,金属材料不能吸收微波。
1.2 微波与材料耦合的关系
根据材料吸收微波功率的关系式
式中f为微波频率(GHz),ε0为真空介电常数(ε0=8.86×10-12F/m),ε"eff为有效损耗因子,E(V/m)为试样内电场强度。当f,ε0,E一定时,材料的加热难易主要决定于ε"eff。有效损耗因子ε" eff通常用可测量的损耗角正切值tgδ来表示, ε"为介电损耗因子,εIr为相对介电常数,σ是总的有效电导率(s/m)。由上式可见材料与微波相互作用产生加热效应主要通过极化介电损耗(ε")和电导损耗(σ)。氮化钒原料具有一般氧化物陶瓷(ZrO:,TiO:等)的离子电导损耗,还有较强的极化损耗特性。这使得其在微波场下显示出良好的加热升温特性。实验发现这种快速烧结过程同时可显著提高致密化速率。快速致密化的主要原因是微波场下材料烧结过程中的扩散系数显著增大。微波加热下的扩散系数高于普通烧结。
1.3 微波的穿透能力和加热深度
在微波电场中,原料球对微波的吸收及转换成热能的程度正比于微波的工作频率、电场强度的平方、介电常数和介质损耗正切值。
在实际加热过程中,存在一个穿透能力和加热深度问题,穿透能力就是电磁波穿人到介质内部的能力。
穿透深度定义为:材料内部功率密度为表面能量密度的1/e或36.8%算起的深度,用D表示
电磁波从原料球的表面进入并在其内部传播时,由于能量不断被吸收并转化为热量,它所携带的能量就随着深入介质表面的距离.并以指数形式衰减。氮化钒微波烧结炉微波频率2.45GHz,它的加热深度比红外加热大得多,烧结炉内经200ram,能够使微波有效穿透,烧结产品均匀,成品率高。
